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Preparation, Clathration Ability, and Catalysis of a 
Two-Dimensional Square Network Material Composed 
of Cadmium(II) and 4,4'-Bipyridine 

= Zn, Cd, Cu; X = PF6, SiF6)" and [Cd(4,4'-bpy)2(H20)2]PF6. 
2(4,4'-bpy)'4H20,6b'<; their clathrate formation and catalysis have 
been not explored. 
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Inorganic materials with inner cavities such as zeolites are 
known to bind many organic molecules in the cavity and often 
exhibit unique catalysis for organic reactions, in which high 
regioselectivity, stereoselectivity, and shape selectivity are ob­
served.1'2 Construction of the inner cavities mainly surrounded 
by organic components is attractive since the shape, size, and 
function of the cavity become designable. This paper reports the 
formation and clathration ability of a two-dimensional square 
network material {[Cd(4,4'-bpy)2](N03)2}„ (1) (bpy = 
bipyridine) .3^ Having inner cavities surrounded by 4,4'-bpy units, 
this material easily clathrates some aromatic guests with high 
shape specificity. Heterogeneous catalysis of 1 for cyanosilylation 
of aldehydes is also disclosed here. Although Robson et al. 
reported closely related materials, [M(4,4'-bpy)2(H20)2]X (M 
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(Counter ions are omitted for clarity.) 

When Cd(N03)2 was treated with 4,4'-bpy (1-2 molar equiv) 
in H2O-EtOH at ambient temperature, colorless crystals easily 
grew within a day.7 Elemental analysis8 and X-ray crystallog­
raphy9 supported the formation of the square network material 
1. The network structure of 1 was confirmed by preparing a 
clathrate with o-dibromobenzene (2). Thus the crystallization 
of 1 in the presence of 2 gave a clathrate complex, {[Cd(bpy)2]-
(N03)2-(C6H4Br2)2}„ (3),10'11 whose crystal structure was ana­
lyzed by an X-ray diffraction study (Figures 1-3). 

The crystal structure is characterized by the following features. 
(1) The clathrate complex 3 consists of two-dimensional networks; 
each network is made up of layers stacked on each other, as in 
graphite, with an interplane separation of 6.30 A (Figure 3). (2) 
A layer consists of an edge-sharing, perfectly planar square with 
a Cd(II) ion and 4,4'-bpy at each corner and side, respectively, 
though each square is distorted to some extent (^N8-Cdl-N2' 
= 86.3°; ZN15-Cdl'-N2" = 93.7°) (Figure 2). (3) Two 
molecules of o-dibromobenzene are clathrated in each square 
cavity. (4) While pyridine rings A and A' linking CdI and CdI' 
are twisted by 139.2°, pyridine rings B and B' are in the same 
plane UC4'C5'C5"C4" = 0.00°).13 This difference is most likely 
attributed to host-guest interactions; i.e., the guest molecule (C) 
stacks B and B' with a face-to-face distance of 3.56-3.98 A.14"16 
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Figure 1. View around the Cd(II) ion of 3, showing 50% probability 
ellipsoids. Important bond lengths (A): Cdl-N2 = 2.372(7), Cdl-N8 
= 2.36(1), Cdl -026 ' = 2.489(7). Bond angles (deg): N2-Cdl-N8 86.3-
(2) ,N2'-Cdl ' -N2"= 172.5(5),N8-Cdl-N15'= 180.0O0(4),N2-Cdl-
026 ' = 78.5(4), N8-Cd-026 ' = 84.9(4), 026-Cd-026 ' = 169.8(7). 

Figure 2. Top view of the square unitoftheclathrate complex 3, showing 
50% probability ellipsoids. Nitrate ions are omitted for clarity. Cd-Cd 
separation: 11.77 A for Cdl-Cdl ' ; 11.86 A for Cdl-Cdl" . 

four pyridyl groups at the equatorial positions and two nitrate 
ions at the apical positions (Figure 1). 

High shape specificity in the clathration deserves attention. 
While o-dibromobenzene and o-dichlorobenzene were clathrated 
efficiently, their meta and para isomers were not included. The 
discrimination of the isomers in the clathration was applied to 
the separation of o-dibromobenzene from the isomeric mixtures.17 

Thus treatment of a mixture of o- and m- (orp-)dibromobenzene 
(1:1) with Cd(NOs)2 and 4,4'-bpy in ethanol-water afforded only 
the clathrate 3 as crystals, from which 2 was recovered with 
>99% purity by acidic decomposition of the clathrate followed 
by extraction. Besides 0-C6H4X2 (X = Cl, Br), monohalobenzenes 
C6HsX (X = Br, Cl) were also complexed in the same host-guest 
ratio.18 
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Figure 3. A view looking down the microchannel of 3. Nitrate ions and 
o-dibromobenzene are omitted for clarity. 

A unique character of the network material 1 is its catalysis 
for the cyanosilylation of aldehydes.19 Typically, treatment of 
benzaldehyde (0.5 mmol) and cyanotrimethylsilane (1.0 mmol) 
with a CH2Cl2 suspension (1.5 mL) of powdered 1 (0.1 mmol) 
(40 0C, 24 h) gave 2-(trimethylsiloxy)phenylacetonitrile in 77% 
yield. The reaction is apparently promoted by heterogeneous 1 
since no reaction took place with powdered Cd(NO3J2 or 4,4'-bpy 
alone or with the supernatant liquid of a CH2CI2 suspension of 
1. Shape specificity similar to that in the clathration of 
dihalobenzenes was observed. While 2-tolualdehyde was cy-
anosilylated in moderate yield (40%), 3-tolualdehyde was poorly 
converted to the adduct (19%). Although a- and ^-naphthal-
dehyde were good substrates to give the adducts in 62 and 84% 
yields, respectively, the more sterically demanding 9-anthralde-
hyde was hardly reacted. These shape specificities may be ascribed 
to the cavity size of the network material. 
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